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Scaling for the critical percolation backbone
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We study the backbone connecting two given sites of a two-dimensional lattice separated by an arbitrary
distancer in a system of siz& at the percolation threshold. We find a scaling form for the average backbone
mass:{Mg)~L%G(r/L), whereG can be well approximated by a power law fo@<1: G(x)~x" with
#=0.37+0.02. This result implies thafMg)~L%~¥r¥ for the entire range €r<L. We also propose a
scaling form for the probability distributio®(Mg) of backbone mass for a givan Forr~L, P(Mg) is
peaked aroundls, whereas for <L, P(Mg) decreases as a power IaM,;’B, with 73=1.20+0.03. The
exponentsys and 7 satisfy the relationy=dg(7g—1), and is the codimension of the backbong=d
—dg. [S1063-651X99)51408-4

PACS numbe(s): 64.60.Ak, 05.45.Df

[. INTRODUCTION AND MOTIVATION of linear sizeL. One goal is to understand the distribution of
the backbone masMg(r,L), and how its average value
The percolation problem is a classical model of phasescales withr andL in the entire range €r<L.
transitions, as well as a useful model for describing connec-
tivity phenomena, and in particular for describing porous Il. MODEL

media[1-3]. At the percolation thresholg., the mass of We choose two sited and B belonging to the infinite

the largest cluster scales with the system sizeas M percolating cluster on a two-dimensional square latttbe
~L%. The fractal dimensior; is related to the space di- fraction of bonds i9=p.=1/2). A andB are separated by a
mensiond and to the order parameter and correlation lengthyistancer and symmetrically located between the bound-
exponentss andv by d;=d— /v [1-3]. In two dimensions,  aries. Using the burning algorithfii3], we determine the
d¢=91/48 is known exactly. backbone connecting these two points for value& ofing-

An interesting subset of the percolation cluster is theing from 100 to 1000. For each value bf we consider a
backbone that is obtained by removing the non-currentsequence of values ofwith 2<r<L —2. In order to test the
carrying bonds from the percolation clusfét. The structure universality of the exponents, we perform our study on three
of the backbone consists of blobs and links5—7]. The lattices: square, honeycomb, and triangular lattice. For sim-
backbone can in fact be further partitioned into subsets agplicity, we restrict our discussion here to the square lattice, as
cording to the magnitude of the electric current carfi@®].  we find similar results for the other two lattices.

The backbone is relevant to transport properfies3] and
fracture[10]. The fractal dimensionlg of the backbone can lIl. BACKBONE MASS PROBABILITY DISTRIBUTION

be defined via its typical masdg, which scales with the e begin by studying the backbone mass probability dis-
system sizd. asMg~L%. The backbone dimension is an tribution P(Mg). We show thaP(Mg) obeys a simple scal-
independent exponent and its exact value is not known. Ang form in the entire range af/L,
current numerical estimafd 1] is dg=1.6432+0.0008.
The operational definition of the backbone has an inter- P(Mg)~ ——F Mg e
esting history[1—3]. Customarily, one defines the backbone B/ pdg /| ydg |
using parallel bars, and looks for the percolation clu&ed ) ] )
the backbongthat connects the two sides of the systeth wh.ereF is a scaling function whose shape depends on the
A different situation arises in oil field applicatiofg2], —rator/L. _
where one studies the backbone connecting two wells sepa- FOrr=L, it seems reasonable to assumedfh(aﬁ/l g) will
rated by ararbitrary distancer. This situation is important P€ peaked around its average valiMg)~L". The data
for transport properties, since in oil recovery one injects wa<collapse predicted by Ed1) is represented in Fig.(d). In
ter at one point and recovers oil at another poirg]. From th(;s case, the scaling functidn is peaked at approximately
a fundamental point of view, it is important to understandL"®- )
how the percolation properties depend on different boundar¥ However, the case<L is less clear. In fact, we expect
conditions. or r<L that the backbone mass fluctuates greatly from one
We study here the backbone connecting two points Sepe{ealization to another, since its minimum value carr lzand
rated by an arbitrary distancein a two-dimensional system its maximum can be of orddr®. Figure 1b) shows a log-
log plot of P(Mg) and the straight line suggests that
P(Mg)~Mg ™. It has a lower cutoff of order (since the
*Permanent address: CEA-BIII, Service de Physique de la Mabackbone must connect poimdssandB) and an upper cutoff
tiere Condensg France. of orderL%. We find good data collapg&ig. 1(c)], which
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© FIG. 2. (a) Log-log plot of the average backbone mabsg) vs
S 1,=1.20 r for four different values ot.. (b) Data from Fig. 2a) collapsed
10° | e e with the use of the scaling form proposed in E8). The error ony
% is typically 0.02.
'Sn‘: \\\\ g
»"}:10—4 . S indicates that the scaling functidfy is a power law in the
§ or=2 range fromr% to L%, with exponent approximatelyg
R .r=q =1.20+0.03(there is a cutoff aMg~ L9 not shown herg
R o r=§ We note that for larger values of a “bump” [indicated by
107 1 - | an arrow on Fig. (b)] located at approximately®s appears
L=400 and assumes increasing importance wheapproacheg..
- This bump appears also in Fig(cl already forr =8.
oo The exponenty is connected to the blob size distribution

10 e

10 M /rd3100 [5] since typically, the two sites belong to the same blob, and
B the sampling of backbones is equivalent to sampling of the

blobs. In[5], there is a relation between the exponegov-

erning the blob size distribution and the fractal dimension of

the backboned/dg=7—1. The exponentrg governs the
FIG. 1. (a) Data collapse ofP(Mg) using Eq.(1) for three  variation of the whole backbone mass, and is therefore ob-

different values ofr ~L. (b) Probability distribution of the back- tained by integration of the blob size distribution. We thus

bone mass fot.=1000 andr=2 (computed with 18 configura- have rg=7— 1, which implies

tions). The exponentz=1.20+0.03 is obtained by a linear fit over

the range 3&Mg<3x10*. The arrow denotes the fact thitg

peaks al%. (c) Data collapse oP(Mg) for L =400 using Eq(1) d B @)

for three different values af. dg = 7B,



RAPID COMMUNICATIONS

PRE 60 SCALING FOR THE CRITICAL PERCOLATION BACKBONE R1125

This relation gives the estimatgy=1.22, which is in good Ldg/ M\~ "8dM

agreement with our numerical simulation. <|\/|E;(r.L)>~fdB @ M ()
r

IV. AVERAGE BACKBONE MASS . . . .
Assuming that_/r is large enough, the integral in E¢) can
We now study the average backbone m@¥s). From  pe approximated as%~“r?, where

dimensional considerations, thedependence can only be a

function ofr/L. We thus propose the followingnsatz Y=dg(rg—1). (8)
ida| T In our simulationTg=1.20=0.03, which leads to the value
(Mg(r,L))~L"G L)' @ =0.33+0.05, in reasonable agreement with the value mea-
sured directly on the average mass.
In Fig. 2(a), we show a double logarithmic scalég versus Moreover, using Eq(2) together with Eq(8), we obtain
r for different values oL. In order to test Eq(3), we scale
the data of Fig. @). The data collapse is obtained using y=d—dg, (9)

dg=1.65 and is shown on Fig.(l). This (log-log) plot sup-

ports the scaling Ansati8). Moreover, one can see that the which means thaty is the codimension of the fractal back-
scaling functionG is, surprisingly, a pure power law on the bone.

entire rangd0,1], with exponenty=0.37+0.02. This result

leads to the following interesting behavior for the average V. SUMMARY

mass. To summarize, we find that for any value ofL, the

(Mg(r,L))~L% ¥, (4  scaling form, Eq(1), for the probability distribution is valid.

The shape of the scaling functiéhdepends om/L, being a
The results(1) and (3) are consistent, as we will show. peaked distribution for~L, and a power law for<L. The

The average mass is given by average backbone mass varies witaindL according to Eq.
(5). For fixed system size, it varies &¥g)~r? (for 0<r

) dM M ) <L). The value ofis is small (y~0.37), indicating that the

e backbone mass does not change drastically @sanges. On
the other hand, the exponent governing the variatiofvbf)
with L for fixed r is expected to be larger, witiMg)

~L9%~¥. This exponenidg—# is not equal to the fractal

In the case where~L, the functionF,(x) is peaked dimensiondy of the backbone, but is smaller by an amount

dg M
(Mo(r L)~ [* F,,L(;g

A. The caser~L

aroundL % and we obtain equal toy.
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