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Scaling for the critical percolation backbone
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We study the backbone connecting two given sites of a two-dimensional lattice separated by an arbitrary
distancer in a system of sizeL at the percolation threshold. We find a scaling form for the average backbone
mass:^MB&;LdBG(r /L), whereG can be well approximated by a power law for 0<x<1: G(x);xc with
c50.3760.02. This result implies that̂MB&;LdB2cr c for the entire range 0,r ,L. We also propose a
scaling form for the probability distributionP(MB) of backbone mass for a givenr . For r'L, P(MB) is
peaked aroundLdB, whereas forr !L, P(MB) decreases as a power law,MB

2tB , with tB.1.2060.03. The
exponentsc and tB satisfy the relationc5dB(tB21), andc is the codimension of the backbone,c5d
2dB . @S1063-651X~99!51408-6#

PACS number~s!: 64.60.Ak, 05.45.Df
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I. INTRODUCTION AND MOTIVATION

The percolation problem is a classical model of pha
transitions, as well as a useful model for describing conn
tivity phenomena, and in particular for describing poro
media @1–3#. At the percolation thresholdpc , the mass of
the largest cluster scales with the system sizeL as M
;Ldf . The fractal dimensiondf is related to the space d
mensiond and to the order parameter and correlation len
exponentsb andn by df5d2b/n @1–3#. In two dimensions,
df591/48 is known exactly.

An interesting subset of the percolation cluster is
backbone that is obtained by removing the non-curre
carrying bonds from the percolation cluster@4#. The structure
of the backbone consists of blobs and links@1,5–7#. The
backbone can in fact be further partitioned into subsets
cording to the magnitude of the electric current carried@8,9#.
The backbone is relevant to transport properties@1–3# and
fracture@10#. The fractal dimensiondB of the backbone can
be defined via its typical massMB , which scales with the
system sizeL as MB;LdB. The backbone dimension is a
independent exponent and its exact value is not known
current numerical estimate@11# is dB51.643260.0008.

The operational definition of the backbone has an in
esting history@1–3#. Customarily, one defines the backbo
using parallel bars, and looks for the percolation cluster~and
the backbone! that connects the two sides of the system@4#.
A different situation arises in oil field applications@12#,
where one studies the backbone connecting two wells s
rated by anarbitrary distancer . This situation is important
for transport properties, since in oil recovery one injects w
ter at one point and recovers oil at another point@12#. From
a fundamental point of view, it is important to understa
how the percolation properties depend on different bound
conditions.

We study here the backbone connecting two points se
rated by an arbitrary distancer in a two-dimensional system
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of linear sizeL. One goal is to understand the distribution
the backbone massMB(r ,L), and how its average valu
scales withr andL in the entire range 0,r ,L.

II. MODEL

We choose two sitesA and B belonging to the infinite
percolating cluster on a two-dimensional square lattice~the
fraction of bonds isp5pc51/2). A andB are separated by a
distancer and symmetrically located between the boun
aries. Using the burning algorithm@13#, we determine the
backbone connecting these two points for values ofL rang-
ing from 100 to 1000. For each value ofL, we consider a
sequence of values ofr with 2<r<L22. In order to test the
universality of the exponents, we perform our study on th
lattices: square, honeycomb, and triangular lattice. For s
plicity, we restrict our discussion here to the square lattice
we find similar results for the other two lattices.

III. BACKBONE MASS PROBABILITY DISTRIBUTION

We begin by studying the backbone mass probability d
tribution P(MB). We show thatP(MB) obeys a simple scal
ing form in the entire range ofr /L,

P~MB!;
1

r dB
Fr /LS MB

r dB D , ~1!

whereF is a scaling function whose shape depends on
ratio r /L.

For r'L, it seems reasonable to assume thatP(MB) will
be peaked around its average value^MB&;LdB. The data
collapse predicted by Eq.~1! is represented in Fig. 1~a!. In
this case, the scaling functionF is peaked at approximatel
LdB.

However, the caser !L is less clear. In fact, we expec
for r !L that the backbone mass fluctuates greatly from o
realization to another, since its minimum value can ber and
its maximum can be of orderLdf . Figure 1~b! shows a log-
log plot of P(MB) and the straight line suggests th
P(MB);MB

2tB . It has a lower cutoff of orderr ~since the
backbone must connect pointsA andB) and an upper cutoff
of orderLdB. We find good data collapse@Fig. 1~c!#, which
-
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FIG. 1. ~a! Data collapse ofP(MB) using Eq. ~1! for three
different values ofr'L. ~b! Probability distribution of the back-
bone mass forL51000 andr 52 ~computed with 105 configura-
tions!. The exponenttB51.2060.03 is obtained by a linear fit ove
the range 30,MB,33104. The arrow denotes the fact thatMB

peaks atLdB. ~c! Data collapse ofP(MB) for L5400 using Eq.~1!
for three different values ofr .
indicates that the scaling functionF0 is a power law in the
range from r dB to LdB, with exponent approximatelytB
51.2060.03 ~there is a cutoff atMB;LdB not shown here!.
We note that for larger values ofr , a ‘‘bump’’ @indicated by
an arrow on Fig. 1~b!# located at approximatelyLdB appears
and assumes increasing importance whenr approachesL.
This bump appears also in Fig. 1~c! already forr 58.

The exponenttB is connected to the blob size distributio
@5# since typically, the two sites belong to the same blob, a
the sampling of backbones is equivalent to sampling of
blobs. In@5#, there is a relation between the exponentt gov-
erning the blob size distribution and the fractal dimension
the backboned/dB5t21. The exponenttB governs the
variation of the whole backbone mass, and is therefore
tained by integration of the blob size distribution. We th
havetB5t21, which implies

d

dB
5tB , ~2!

FIG. 2. ~a! Log-log plot of the average backbone mass^MB& vs
r for four different values ofL. ~b! Data from Fig. 2~a! collapsed
with the use of the scaling form proposed in Eq.~3!. The error onc
is typically 0.02.
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This relation gives the estimatetB.1.22, which is in good
agreement with our numerical simulation.

IV. AVERAGE BACKBONE MASS

We now study the average backbone mass^MB&. From
dimensional considerations, ther dependence can only be
function of r /L. We thus propose the followingAnsatz:

^MB~r ,L !&;LdBGS r

L D . ~3!

In Fig. 2~a!, we show a double logarithmic scaleMB versus
r for different values ofL. In order to test Eq.~3!, we scale
the data of Fig. 2~a!. The data collapse is obtained usin
dB51.65 and is shown on Fig. 2~b!. This ~log-log! plot sup-
ports the scaling Ansatz~3!. Moreover, one can see that th
scaling functionG is, surprisingly, a pure power law on th
entire range@0,1#, with exponentc50.3760.02. This result
leads to the following interesting behavior for the avera
mass:

^MB~r ,L !&;LdB2cr c. ~4!

The results~1! and ~3! are consistent, as we will show
The average mass is given by

^MB~r ,L !&;E
r

LdB

Fr /LS M

r dBD dM

r dB
M . ~5!

A. The caser'L

In the case wherer'L, the functionF1(x) is peaked
aroundLdB and we obtain

^MB~r ,L !&;LdB, ~6!

which is consistent with Eq.~3!.

B. The caser !L

When r !L, the scaling functionFr /L has now a power
law behaviorF0(x);x2tB for x.1, and F0(x)50 for x
,1. The average mass is then given by
.

.

J

e

^MB~r ,L !&;E
r dB

LdBS M

r dBD 2tB dM

r dB
M . ~7!

Assuming thatL/r is large enough, the integral in Eq.~5! can
be approximated asLdB2cr c, where

c5dB~tB21!. ~8!

In our simulationtB51.2060.03, which leads to the valu
c50.3360.05, in reasonable agreement with the value m
sured directly on the average mass.

Moreover, using Eq.~2! together with Eq.~8!, we obtain

c5d2dB , ~9!

which means thatc is the codimension of the fractal back
bone.

V. SUMMARY

To summarize, we find that for any value ofr /L, the
scaling form, Eq.~1!, for the probability distribution is valid.
The shape of the scaling functionF depends onr /L, being a
peaked distribution forr'L, and a power law forr !L. The
average backbone mass varies withr andL according to Eq.
~5!. For fixed system size, it varies as^MB&;r c ~for 0,r
,L). The value ofc is small (c'0.37), indicating that the
backbone mass does not change drastically asr changes. On
the other hand, the exponent governing the variation of^MB&
with L for fixed r is expected to be larger, witĥMB&
;LdB2c. This exponentdB2c is not equal to the fracta
dimensiondB of the backbone, but is smaller by an amou
equal toc.
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